
Web Accessibility

1 / 112

Tim Berners-Lee

w3.org/WAI/fundamentals/accessibility-intro/

The power of the Web is in its
universality. Access by everyone

regardless of disability is an
essential aspect.

“

”

2 / 112

https://www.w3.org/WAI/fundamentals/accessibility-intro/

Web a11y has a hard time in being a
high priority matter.

3 / 112

Web a11y is not sexy, because it is
an old topic which deals with

disabled people.

4 / 112

Web a11y myths make it even
worse.

5 / 112

Myth #1: There’s only a small
audience for web a11y

6 / 112

Myth #2: Accessible websites are
ugly and boring

7 / 112

Myth #3: Web a11y is the sole
responsibility of developers

8 / 112

Myth #4: A11y is expensive

9 / 112

Goals of this talk:

1. Tackle the misconceptions of web a11y

2. Provide you with the essential tools to
build accessible web sites

10 / 112

Who’s the audience?

11 / 112

Who’s the audience?
People with sensory disabilities: Colour deficiency, blindness, deafness etc.

12 / 112

Who’s the audience?
People with physical disabilities: Contergan, motor disabilities etc.

13 / 112

Who’s the audience?
People with learning disabilities: Dyslexia, lassasthenia etc.

14 / 112

Who’s the audience?
People with cognitive disabilities: Down syndrome, autism etc.

15 / 112

Who’s the audience?
People with chronic illness: Cerebral palsy, epilepsy, chronic fatigue syndrome...

16 / 112

Who’s the audience?
People with other disabilities

17 / 112

Who’s the audience?
People without disabilities

Busy people or people who are in a hurry

People who have their hands full (think of baby, ski lift) etc.

People with super slow network connectivity

People with sun shining on their smart phones

People reading you site in a language with incredibly long words

People who read captions for language related reasons

People who simply use your website differently than others/you

Fatigued people

Search engines

etc.

18 / 112

Accessible websites are not
necessarily ugly and boring.

Here is an example as a counter document: mozilla.org/en-US/firefox

19 / 112

https://www.mozilla.org/en-US/firefox/

A team as a whole is responsible for
making a website accessible.

20 / 112

If the designer doesn’t take a11y into
account, shall the dev fix the design?

21 / 112

What’s the point, if one dev incorporates
a11y into “his” components but the next
dude uses a for a submit button?

22 / 112

A11y is not necessarily expensive.

23 / 112

If you know how a11y works and do things
the right way from the beginning, the costs

involved are reasonable.

24 / 112

How do I make my website
accessible?

25 / 112

 WCAG 2.1
Principles based on

P erceivable (1.x.x)

O perable (2.x.x)

U nderstandable (3.x.x)

R obust (4.x.x)

Three levels of compliance: A, AA, AAA

Finalized 5. June 2018

w3.org/TR/WCAG21

w3.org/WAI/standards-guidelines/wcag/new-in-21

26 / 112

https://www.w3.org/TR/WCAG21/
https://www.w3.org/WAI/standards-guidelines/wcag/new-in-21/

Perceivable

Web content is made available to the senses -
sight, hearing and/or touch

27 / 112

Perceivable
1.1 Text Alternatives: Provide text alternatives for any non-text content
(images, buttons, form inputs, embedded multimedia, frames etc.)

1.2 Time-based Media: Provide alternatives for time-based media (audio, video)

1.3 Adaptable: Create content that can be presented in different ways without losing
information or structure (meaningful relationships, sequence and sensory
characteristics)

1.4 Distinguishable: Make it easier for users to see and hear content including
separating foreground from background (color, typography, audio controls etc.)

28 / 112

Perceivable

1.4.3 Contrast (Minimum) (AA)

Text and images of text have a contrast ratio of at least 4.5:1.

Large text - at least 18 point (typically 24px) or 14 point (typically 18.66px) bold
has a contrast ratio of at least 3:1.

https://webaim.org/resources/contrastchecker/

29 / 112

https://webaim.org/resources/contrastchecker/

Perceivable

1.4.13 Content on Hover or Focus (AA)

Where receiving and then removing pointer hover or keyboard focus triggers
additional content to become visible and then hidden, the following are true:

Dismissable: A mechanism is available to dismiss the additional content without
moving pointer hover or keyboard focus, unless the additional content
communicates an input error or does not obscure or replace other content;

Hoverable: If pointer hover can trigger the additional content, then the pointer
can be moved over that content without the additional content disappearing;

Persistent: The additional content remains visible until the hover or focus trigger
is removed, the user dismisses it, or its information is no longer valid.

Exception: The visual presentation of the additional content is controlled by the user
agent and is not modified by the author.

30 / 112

Perceivable

Scenario: A person with low vision who uses
screen magnification software.

Problem: “I was moving my mouse around to track what I was looking at on a web
page. It helps me keep focused. Then -boom- this little box popped up. It covered
what I was trying to read and I couldn't get it to go away.”

Works well: “I hovered over a word and a box popped up with the definition, but it
was mostly off the screen with my magnification. I moved my mouse pointer to the
definition box and scrolled the magnified area over to the definition box and it
stayed popped up so I could read it.”

31 / 112

Perceivable

32 / 112

Perceivable

33 / 112

Operable

Interface forms, controls, and navigation are
operable

34 / 112

Operable
2.1 Keyboard Accessible: Make all functionality available from a keyboard

2.2 Enough Time: Provide users enough time to read and use content

2.3 Seizures: Do not design content in a way that is known to cause seizures

2.4 Navigable: Provide ways to help users navigate, find content, and determine
where they are

35 / 112

Operable

2.1.2 No Keyboard Trap (Level A)

Keyboard focus is never locked or trapped at one particular page element. The
user can navigate to and from all navigable page elements using only a keyboard.

36 / 112

Operable

2.1.2 No Keyboard Trap (Level A)

Keyboard focus is never locked or trapped at one particular page element. The
user can navigate to and from all navigable page elements using only a keyboard.

Q: “But what about modal layers?”

37 / 112

Operable

2.1.2 No Keyboard Trap (Level A)

Keyboard focus is never locked or trapped at one particular page element. The
user can navigate to and from all navigable page elements using only a keyboard.

Q: “But what about modal layers?”

A: “If you have a trapped mouse user, you can as well have a trapped keyboard user.”

38 / 112

Operable

2.3.1 Three Flashes or Below Threshold
(Level A)

No page content flashes more than 3 times per second unless that flashing
content is sufficiently small and the flashes are of low contrast and do not
contain too much red.

39 / 112

40 / 112

Operable

41 / 112

Understandable
3.1 Readable: Make text content readable and understandable

3.2 Predictable: Make Web pages appear and operate in predictable ways

3.3 Input Assistance: Help users avoid and correct mistakes

42 / 112

Understandable

3.2.2 On Input (Level A)

When a user inputs information or interacts with a control, it does not result in a
substantial change to the page, the spawning of a pop-up window, an additional
change of keyboard focus, or any other change that could confuse or disorient
the user unless the user is informed of the change ahead of time.

43 / 112

Understandable

44 / 112

Robust
4.1 Compatible: Maximize compatibility with current and future user agents,
including assistive technologies

45 / 112

Robust

Common screen reader combinations

JAWS + IE (24.7%)

NVDA + Firefox (23.6%)

JAWS with Firefox (15.1%)

VoiceOver + (Mobile) Safari (10.0%)

ChromeVox and Windows Narrator are very rarely used, so be cautious in using them
exclusively for testing.

webaim.org/projects/screenreadersurvey7/#browsercombos

46 / 112

https://webaim.org/projects/screenreadersurvey7/#browsercombos

Evaluating a11y

47 / 112

Evaluating a11y
Doesn’t really make sense at the end of the project

Integrate a11y into the project as a continuous process

48 / 112

Evaluating a11y

Methodologies

Automated tools

Checklists

Usability testing

Self-testing

49 / 112

Evaluating a11y

Automated tools

Chrome a11y audit

Accessibility Developer Tools

aXe

aXe Chrome extension

aXe Firefox extension

aXe-core

Pa11y

50 / 112

https://github.com/GoogleChrome/accessibility-developer-tools
https://chrome.google.com/webstore/detail/axe/lhdoppojpmngadmnindnejefpokejbdd/
https://addons.mozilla.org/en-US/firefox/addon/axe-devtools/
https://github.com/dequelabs/axe-core
https://github.com/pa11y/pa11y

Evaluating a11y

Use automated tools

51 / 112

Evaluating a11y

Use check lists

www.w3.org/WAI/WCAG21/quickref

webaim.org/standards/wcag/checklist

52 / 112

https://www.w3.org/WAI/WCAG21/quickref/
https://webaim.org/standards/wcag/checklist/

Evaluating a11y

Conduct usability testing

Do not conduct accessibility testing with users with disabilities

Conduct usability testing and include users with disabilities

53 / 112

A11y is about people –
only people can evaluate true a11y

54 / 112

55 / 112

Screen reader usage

Voiceover (the usefull for testing stuff)

Stop speech: ctrl / two-finger tap

Toggle on and off: cmd + F5 / configurable

Read All From Current Position: VO + A / two-finger swipe down

Scroll: (alt +) arrow keys / three-finger swipe

Activate item: VO + spacebar / double tap

Go into / out of objects: VO + shift + ↓/↑

Rotor: VO + u / twist two fingers

pauljadam.com/demos/iosvocheatsheet.html

56 / 112

http://pauljadam.com/demos/iosvocheatsheet.html

57 / 112

Screen reader usage

Jaws (the usefull for testing stuff)

Stop speech: ctrl

Toggle on and off: insert + spacebar, s

Read All From Current Position: insert + ↓

Activate item: ↵ or spacebar

Enter forms mode: ↵ (in a form element)

Exit forms mode: +

Go to next heading: H

Go to next landmark/region: R

doccenter.freedomscientific.com/doccenter/archives/training/jawskeystrokes.htm

58 / 112

https://doccenter.freedomscientific.com/doccenter/archives/training/jawskeystrokes.htm

The a11y tree

59 / 112

The a11y tree

60 / 112

The a11y tree

61 / 112

Focus

62 / 112

Focusable stuff

1. I’m a button

2. I’m a focusable link

3. I’m a not-focusable link

4. I’m another focusable link

5. I’m a focusable link with a weird tab order

6. I’m a focusable link as well

7. I’m a stupid span

8. I’m a focusable span

9. I’m a programatically focusable span
63 / 112

javascript:;
javascript:;

Operable

2.4.3 Focus Order (A)

The navigation order of links, form elements, etc. is logical and intuitive.

2.4.7 Focus Visible (AA)

It is visually apparent which page element has the current keyboard focus
(i.e., as you tab through the page, you can see where you are).

64 / 112

Focus within

I’m a button

Simple polyfill: https://gist.github.com/aFarkas/a7e0d85450f323d5e164

There are also PostCSS plugins out there

65 / 112

https://gist.github.com/aFarkas/a7e0d85450f323d5e164

“Freak out” mode

(When focused elements disappear)

66 / 112

Focus traps

Note: The user can always escape such traps (for instance using the VoiceOver rotor).

67 / 112

Focus
Don’t use tabindex > 0 unless you really know what you’re doing

Beware of the “freak out mode”, circumvent it by setting focus

Be carefull with , your focus ring might get hidden

Check out github.com/NV/flying-focus

Use focus traps wisely

Hash tag links do not set focus reliably (see axesslab.com/skip-links)

68 / 112

https://github.com/NV/flying-focus
https://axesslab.com/skip-links/

Hiding content

69 / 112

Hiding content from everyone

 (allows applying delays by using CSS transitions)

HTML attribute

70 / 112

Hiding content visually

Use judiciously!

71 / 112

Hiding content from screen reader

72 / 112

The first rule of ARIA: Don’t use ARIA
(unless really necessary)

73 / 112

Inert

Furthermore, a node which is inert should also be hidden from assistive technology.

html.spec.whatwg.org/multipage/interaction.html#inert

Polyfill: github.com/WICG/inert

Sets on everything focusable in the inert subtree

Sets on the inert subtree

Sets on the inert subtree

When a node is inert, then the user agent must act as if the node was absent for
the purposes of targeting user interaction events, may ignore the node for the
purposes of text search user interfaces (commonly known as “find in page”), and
may prevent the user from selecting text in that node.

“
”

74 / 112

https://html.spec.whatwg.org/multipage/interaction.html#inert
https://github.com/WICG/inert

Hiding content
Do not use , use instead
(A screen reader will “see” an element with even when it is
inside a container with)

Note that setting on a container alone does not remove
its content from the tab-order

Note that is different from . It is used to remove
semantic meaning from an element and any of its related child elements. The
content of elements with will still be picked up by assistive
technology!

75 / 112

Labeling content

76 / 112

Labeling content

1. Foo

2. Foo

3. Foo

4. Foo

5. Foo

6. Foo

7. Foo77 / 112

Labeling content

I18n

1. It is verboten to write bad code.

2. It is verboten to write bad code.

78 / 112

Labeling content

Abbreviations

That joke made me LOL big time.

79 / 112

Labeling content

CSS effects

1. ADD TO CART

2. ADD TO CART

3. ADD TO CART

80 / 112

Labeling content

CSS pseudo elements

/ are not a11y supported in IE11. So do not rely on them.

81 / 112

Labeling content

ARIA SSML (proposal)

github.com/mhakkinen/SSMLinHTMLproposal

82 / 112

https://github.com/mhakkinen/SSMLinHTMLproposal

Landmarks

83 / 112

Landmarks

HTML elements defining ARIA landmarks by default:

Note: When using multiple sectioning elements of the same type on the same page,
consider giving each of them a title / aria-label which allows for a clear distinction.

w3.org/TR/wai-aria-practices/examples/landmarks

84 / 112

https://www.w3.org/TR/wai-aria-practices/examples/landmarks/index.html

Live regions

85 / 112

Live regions

Accessible forms

Type in a number lower than 3:

86 / 112

Live regions

Alerting the user via JavaScript

87 / 112

Live regions

Giving a heads up via JavaScript

88 / 112

Live regions
You should be polite (is better supported than)

Note: Screen readers “buffer” pages as they are loaded. Any content that is added
after page load may not be picked up by the screen reader

Note: Screen readers can only focus on one part of the page at a time. If
something changes on another area of the page, screen readers may not pick it
up

 should not be used for non-critical purposes

 has some support issues

Test, test, test!

89 / 112

ARIA Roles

90 / 112

ARIA Roles
Abstract roles (do not use!):

Widget roles:

Document structure roles:

Landmark roles:

91 / 112

ARIA Roles
+ariaatomic
+ariabusy
+ariacontrols
+ariadescribedby
+ariadisabled
+ariadropeffect
+ariaflowto
+ariagrabbed
+ariahaspopup
+ariahidden
+ariainvalid
+arialabel
+arialabelledby
+arialive
+ariaowns
+ariarelevant

roletype

+ariaactivedescendant
composite

+ariaactivedescendant
+ariaautocomplete
+ariamultiline
+ariareadonly
+ariarequired

textbox
+ariaactivedescendant

group

menuitemcheckbox

+ariamultiselectable
+ariarequired

listbox
+ariamultiselectable
+ariarequired

tree

+arialevel
+ariamultiselectable
+ariareadonly

grid

+ariaautocomplete
+ariarequired

combobox complementarymenuitemradio

+ariasort
columnheader

+ariaorientation
slider

+ariaexpanded
+ariaorientation

separator
+ariaexpanded
document

+ariavaluenow
+ariavaluemin
+ariavaluemax
+ariavaluetext

range

+ariaexpanded
link

+ariaexpanded
sectionhead

+ariaexpanded
section

+ariaexpanded
window

+ariapressed
+ariaexpanded

button

presentation

progressbar
+ariareadonly
+ariarequired
+ariaselected

gridcell
+ariaselected

tab
+ariachecked
+ariaposinset
+ariaselected
+ariasetsize

option

+arialevel
+ariaselected

row

+ariaposinset
+ariasetsize
+arialevel

listitem
+ariachecked
checkbox

+ariarequired
radiogroup

+ariarequired
spinbutton

contentinfo

+ariasort
rowheader

application alertdialog

menuitem

navigation

rowgroup

+arialevel
tablist

definition

command

menubar

marquee

directory

landmark

+arialevel
headingscrollbar

treeitem

structure

tabpanel

treegrid

toolbar

banner search

region

widget

status

tooltip

select

article

dialog

menu timer

log

note

alert

form main

listradio

input

mathimg

Roles with a pale background and name in
italics are abstract and cannot be used in
content.

Concrete roles have a yellow background and
name in boldface.

Access instructions at
http://www.w3.org/TR/waiaria/rdf_model.html.

92 / 112

ARIA Roles

A role is a promise

for instance is a promise that the author of that has also incorporated
JavaScript that provides the keyboard interactions expected for a button. Unlike
HTML input elements, ARIA roles do not cause browsers to provide keyboard
behaviors or styling.

If you use an ARIA role, make sure you conform with the according design pattern:
www.w3.org/TR/wai-aria-practices-1.1/#aria_ex

93 / 112

https://www.w3.org/TR/wai-aria-practices-1.1/#aria_ex

ARIA Roles

Example: Menu or menu bar

Keyboard Interaction:

The following description of keyboard behaviors assumes: A horizontal menubar containing several menuitem elements. All items in the menubar have child submenus that contain multiple vertically arranged items. Some of the
menuitem elements in the submenus have child submenus with items that are also vertically arranged. When reading the following descriptions, also keep in mind that: Focusable elements, which may have role menuitem,
menuitemradio, or menuitemcheckbox, are referred to as items. If a behavior applies to only certain types of items, e.g., menuitem elements, the specific role name is used. Submenus, also known as pop-up menus, are elements
with role menu. Except where noted, menus opened from a menubutton behave the same as menus opened from a menubar. When a menu opens, or when a menubar receives focus, keyboard focus is placed on the first item. All
items are focusable as described in 5.6 Keyboard Navigation Inside Components. Enter: When focus is on a menuitem that has a submenu, opens the submenu and places focus on its first item. Otherwise, activates the item and
closes the menu. Space: (Optional): When focus is on a menuitemcheckbox, changes the state without closing the menu. (Optional): When focus is on a menuitemradio that is not checked, without closing the menu, checks the
focused menuitemradio and unchecks any other checked menuitemradio element in the same group. (Optional): When focus is on a menuitem that has a submenu, opens the submenu and places focus on its first item. (Optional):
When focus is on a menuitem that does not have a submenu, activates the menuitem and closes the menu. Down Arrow: When focus is on a menuitem in a menubar, opens its submenu and places focus on the first item in the
submenu. When focus is in a menu, moves focus to the next item, optionally wrapping from the last to the first. Up Arrow: When focus is in a menu, moves focus to the previous item, optionally wrapping from the first to the last.
(Optional): When focus is on a menuitem in a menubar, opens its submenu and places focus on the last item in the submenu. Right Arrow: When focus is in a menubar, moves focus to the next item, optionally wrapping from the
last to the first. When focus is in a menu and on a menuitem that has a submenu, opens the submenu and places focus on its first item. When focus is in a menu and on an item that does not have a submenu, performs the
following 3 actions: Closes the submenu and any parent menus. Moves focus to the next menuitem in the menubar. Either: (Recommended) opens the submenu of that menuitem without moving focus into the submenu, or opens
the submenu of that menuitem and places focus on the first item in the submenu. Note that if the menubar were not present, e.g., the menus were opened from a menubutton, Right Arrow would not do anything when focus is on
an item that does not have a submenu. Left Arrow: When focus is in a menubar, moves focus to the previous item, optionally wrapping from the last to the first. When focus is in a submenu of an item in a menu, closes the
submenu and returns focus to the parent menuitem. When focus is in a submenu of an item in a menubar, performs the following 3 actions: Closes the submenu. Moves focus to the previous menuitem in the menubar. Either:
(Recommended) opens the submenu of that menuitem without moving focus into the submenu, or opens the submenu of that menuitem and places focus on the first item in the submenu. Home: If arrow key wrapping is not
supported, moves focus to the first item in the current menu or menubar. End: If arrow key wrapping is not supported, moves focus to the last item in the current menu or menubar. Any key that corresponds to a printable
character (Optional): Move focus to the next menu item in the current menu whose label begins with that printable character. Escape: Close the menu that contains focus and return focus to the element or context, e.g., menu
button or parent menuitem, from which the menu was opened. Tab: Moves focus to the next element in the tab sequence, and if the item that had focus is not in a menubar, closes its menu and all open parent menu containers.
Shift + Tab: Moves focus to the previous element in the tab sequence, and if the item that had focus is not in a menubar, closes its menu and all open parent menu containers. NOTE Disabled menu items are focusable but cannot
be activated. A separator in a menu is not focusable or interactive. If a menu is opened or a menubar receives focus as a result of a context action, Escape or Enter may return focus to the invoking context. For example, a rich text
editor may have a menubar that receives focus when a shortcut key, e.g., alt + F10, is pressed while editing. In this case, pressing Escape or activating a command from the menu may return focus to the editor. Although it is
recommended that authors avoid doing so, some implementations of navigation menubars may have menuitem elements that both perform a function and open a submenu. In such implementations, enter and Space perform a
navigation function, e.g., load new content, while Down Arrow, in a horizontal menubar, opens the submenu associated with that same menuitem. When items in a menubar are arranged vertically and items in menu containers are
arranged horizontally: Down Arrow performs as Right Arrow is described above, and vice versa. Up Arrow performs as Left Arrow is described above, and vice versa.

www.w3.org/TR/wai-aria-practices-1.1/#menu

94 / 112

https://www.w3.org/TR/wai-aria-practices-1.1/#menu

No ARIA is better than bad ARIA
www.w3.org/TR/wai-aria-practices-1.1/#no_aria_better_bad_aria

95 / 112

https://www.w3.org/TR/wai-aria-practices-1.1/#no_aria_better_bad_aria

Accessible SVG

96 / 112

Accessible SVG

Does the graphic have a function?
If so, it should be conveyed to the user.

97 / 112

Accessible SVG

Basic image replacement

Use plus an resp. an attribute:

98 / 112

Mmmmmmm… �!

99 / 112

Please don’t…

100 / 112

Accessible SVG

SVG charts

Commonly Used Screen Readers

Data & original image from WebAIM's Screen Reader User Survey #6 Results

Jaws - 44%

NVDA - 41%

VoiceOver - 31%

Window-Eyes - 30%

ZoomText - 28%

SA or SAToGo - 7%

ChromeVox - 3%

Others - 7%

 50%

 25%

 0%

101 / 112

http://webaim.org/projects/screenreadersurvey6/#used

Accessible SVG

Charts

102 / 112

Misc

103 / 112

“Aria-Controls is �”

Or: Should or shouldn’t I stick to the specs?

heydonworks.com/article/aria-controls-is-poop

Recommendations:

If it serves less than it disrupts (too much noise etc.), don’t use it

Else use it

Test with the assistive technology you want or have to support

We need to talk about . It’s poorly supported, does very little, and
does what it does when it does badly. It is poop and we rely on it way too much.
We are short-changing assistive technology users when we do.

“
”

104 / 112

http://www.heydonworks.com/article/aria-controls-is-poop

I have a SPA. or ?
On single page apps sometimes the view changes significantly, while the user seems
to stay on the same page. WAI says:

w3.org/WAI/PF/aria/roles#link

Recommendations:

If you haven’t accounted for history navigation, use a button, else you may use a
link, which promises the posibility to go back and forward in (browser) history

Other than that: As long as the user is clear about what will happen upfront,
you may use whatever fits best your use case

Note: If pressing the link triggers an action but does not change browser focus or
page location, authors are advised to consider using the button role instead of
the link role.

“
”

105 / 112

https://www.w3.org/WAI/PF/aria/roles#link

I have a SPA

More Recommendations on SPAs:

Use structural elements (, etc.)

Update page title to reflect content state

Keyboard navigation

Ensure only visible elements are navigable

Set focus when necessary

Use live regions for messaging, if necessary

Read: developer.paciellogroup.com/blog/2018/01/a-tale-of-two-rooms-
understanding-screen-reader-navigation/

106 / 112

https://developer.paciellogroup.com/blog/2018/01/a-tale-of-two-rooms-understanding-screen-reader-navigation/

�
Problem: Most of the time toasts appear at a different spot on the page, far away
from where the user focus is.

Recommendations:

Make the toast appears at the top of the page (DOM/a11y-tree)

Use a titled live region (in most cases will suffice)

Do not try to trap the focus inside the toast

Make the toast dismissible

Make sure you follow the web content accessibility guidelines

107 / 112

Final words

108 / 112

A website that is not accessible
is a website with disabilities.

109 / 112

Designing for a11y is part of making
a website awesome!

… and not getting sued

110 / 112

Making a website accessible
is not that hard

if you make it part of your daily
routine and make sure everyone in

your team follows along.

111 / 112

112 / 112

